Characterization of exogenous DNA mobility in live cells through fluctuation correlation spectroscopy

نویسندگان

  • Stephen Mieruszynski
  • Michelle A. Digman
  • Enrico Gratton
  • Mark R Jones
چکیده

The spatial-temporal dynamics of delivered DNA is a critical aspect influencing successful gene delivery. A comprehensive model of DNA lipoplex trafficking through live cells has yet to be demonstrated. Here the bioimaging approaches Raster Image Correlation Spectroscopy (RICS) and image-Means Square Displacement (iMSD) were applied to quantify DNA mechanical dynamics in live cells. DNA lipoplexes formed from DNA with a range of 21 bp to 5.5 kbp exhibited a similar range of motion within the cytoplasm of myoblast cells regardless of size. However, the rate of motion was dictated by the intracellular location, and DNA cluster size. This analysis demonstrated that the different transport mechanisms either had a size dependent mobility, including random diffusion, whereas other mechanisms were not influenced by the DNA size such as active transport. The transport mechanisms identified followed a spatial dependence comparable to viral trafficking of non-active transport mechanism upon cellular entry, active transport within the cytoplasm and further inactive transportation along the peri-nuclear region. This study provides the first real-time insight into the trafficking of DNA delivered through lipofection using image-based fluctuation correlation spectroscopy approaches. Thereby, gaining information with single particle sensitivity to develop a deeper understanding of DNA lipoplex delivery through the cell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein Interaction and Transport Maps of Live Cell Nuclei Using Fluorescence Correlation Spectroscopy in a Single Plane Illumination Microscope

Typical microscopic methods used for characterizing intracellular protein mobility are, e.g., fluorescence photobleaching recovery (FRAP) and fluorescence correlation spectroscopy (FCS). Of these, FRAP can image protein mobility in entire two-dimensional sections of live cells, but is typically limited to the time resolution of confocal image series, some frames per second. FCS, on the other ha...

متن کامل

BRCA2 diffuses as oligomeric clusters with RAD51 and changes mobility after DNA damage in live cells

Genome maintenance by homologous recombination depends on coordinating many proteins in time and space to assemble at DNA break sites. To understand this process, we followed the mobility of BRCA2, a critical recombination mediator, in live cells at the single-molecule level using both single-particle tracking and fluorescence correlation spectroscopy. BRCA2-GFP and -YFP were compared to distin...

متن کامل

Raster image cross-correlation analysis for spatiotemporal visualization of intracellular degradation activities against exogenous DNAs

Reducing intracellular DNA degradation is critical to enhance the efficiency of gene therapy. Exogenous DNA incorporation into cells is strictly blocked by the defense machinery of intracellular nuclease activity. Raster image correlation spectroscopy (RICS) and raster image cross-correlation spectroscopy (cross-correlation RICS; ccRICS) are image-based correlation methods. These powerful tools...

متن کامل

Imaging Fos-Jun Transcription Factor Mobility and Interaction in Live Cells by Single Plane Illumination-Fluorescence Cross Correlation Spectroscopy

We collected mobility and interaction maps of c-Fos-eGFP and c-Jun-mRFP1 transcription factors within living cell nuclei. c-Fos dimerizes with c-Jun to form the transcription activator protein-1 (AP-1) which binds to the specific recognition site. To monitor this process, we used fluorescence cross-correlation spectroscopy on a single plane illumination microscope (SPIM-FCCS), which provides di...

متن کامل

Probing the kinetic landscape of Hox transcription factor–DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy

Hox genes encode transcription factors that control the formation of body structures, segment-specifically along the anterior-posterior axis of metazoans. Hox transcription factors bind nuclear DNA pervasively and regulate a plethora of target genes, deploying various molecular mechanisms that depend on the developmental and cellular context. To analyze quantitatively the dynamics of their DNA-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015